The Memory of Cars

Tom Coughlin
Chair of IEEE CE Future Directions and Director IEEE Region 6
tom@tomcoughlin.com

Austin-Healey 3000 Mk III at the Gibraltar Classic Car rally, Casemates Square, Joe Vivent, 2009 Creative Commons License
1970 AMC Hornet—My First Car
Outline

• Drivers for Automotive Electronics and Memory
• Data Requirements in Automobiles
• Modern Storage and Memory Technologies
• Sample Infortainment Application—BMW Digital Radio
Drivers for Automotive Electronics and Memory
Automotive Technology Trends

• More Electric and Hybrid Automobiles
• More Connected Vehicles
 – Radios
 – Antennas
• Advanced Drive Assistance System (ADAS)
 – Sensors
 – Cameras
 – Machine learning
• Infotainment and Instrument Cluster
 – Augmented Reality (AR)
 – Virtual Reality (VR)—with autonomous vehicles or for passengers?
 – Higher definition, higher dynamic range, richer color displays
 – Targeted audio

© 2016 Coughlin Associates
Electronics in Modern Automobiles

Source: Clemson University Vehicular Technology Lab

© 2016 Coughlin Associates
The Internet of Things (IoT)

• Interconnected intelligent devices (including vehicles) are all the rage in technology circles.
 – As the price declines and the availability of microprocessors increases, they are showing up in consumer products ranging from thermostats to refrigerators.

• The convergence of ubiquitous processing and networking is often referred to as the Internet of Things (IoT). As a result of the proliferation of smart connected devices, smart things will be in our homes, on our roads, in our factories, our gardens and in the air.
The Internet of Things (IoT) is spurring the development of innovative technologies that are delivering new ways for cars to inform, entertain and assist drivers in a safe and comfortable way. Here’s a look at how technology is changing daily commutes, both now and in the future.

TODAY

Car owners and buyers want the latest technologies in their vehicles, and safety is key.

- 60% of roadway collisions could be avoided with half a second’s warning.
- 90% of collisions could be avoided with a full second’s warning.

Intelligent Maintenance

Local analytics could be applied to thousands of on-board sensors to flag abnormal events and take corrective action. The data may then be sent to automakers for deeper insight into trends across entire vehicle fleets.

TOMORROW

Car buyers will have new demands too!

- 69% said they would like to use a semi-autonomous lane-keeping system.
- 63% would like to use car-to-car communications.
- 63% would welcome a fatigue warning device in their vehicles.

Vehicle-to-Vehicle Communication

Intelligent cars have the potential to reduce 79% of crashes by exchanging information about location, speed and direction. As a result, cars could then take proactive measures to keep traffic moving efficiently and safely.

Data, Data Everywhere

152 million connected cars will be on the road by 2020, generating 11 petabytes of data annually. Intelligent cars could collect and analyze data from each other, the cloud and the transportation infrastructure to provide the right information, at the right time, and in the right way to keep drivers safe.
SAE Levels of Autonomous Driving
Connected Vehicle Services

Automobiles Becoming a Web of Wireless Networks

• 4G or 5G: External communication to edge or cloud connections

• WiFi: Used for IP network connectivity within vehicles, e.g. connections to occupant devices

• BlueTooth: Personal device communication and entertainment

• RFID: Auto component communication, key fobs, toll and other electronic payments
RFID in Cars

- Used for secure access
 - Key Fobs
 - Toll Payments, electronic payments
- Embedded ID and sensor measurements with RFID, in car components
 - Getting information on the tire’s internal temperature and pressure, how it’s wearing and getting exercised, revolutions per mile and more
 - In the future, tires on autonomous cars might transmit what kind of surface is being traveled on—so the vehicle knows, for instance, the difference between gravel and snow.
Location of Storage/Memory for Connected Cars (mostly LTE)

- Fog Storage
- Smart City
- Cloud Storage
- In-vehicle storage
- Open Fog Consortium
The Role of the Fog

Source: Fog Computing: Bringing Cloud Capabilities Down to Earth, Cisco Blog, August 2015

Fog Computing... a system-level architecture to extend
- Compute
- Network
- Storage
 capability of cloud to the edge of the IoT network
US DoT Project on Next Gen Connected Vehicles
Automotive Industry Requirements

Quality
- ISO AECQ-100
- -40 to +105/125/150°C
- ISO/TS 16949
- Zero DPM methodology
- Manufacturing control

Longevity
- 10+ year lifetime
- 2 years to ramp
- Extended litho migrations

Security
- Secure boot
- HW + SW
- Data at rest encryption

Performance
- Instant-on boot
- 5+ year data retention
- PE cycling
- Sequential/Random performance

Memory Development to Drive Autonomously, Kris Baxter, Micron, 2016 Flash Memory Summit
nVIDIA
Autonomous
Race Car
SENSOR FUSION

DRIVE PX can fuse data from 12 cameras, as well as lidar, radar, and ultrasonic sensors. This allows algorithms to accurately understand the full 360 degree environment around the car to produce a robust representation, including static and dynamic objects. Use of Deep Neural Networks (DNN) for the detection and classification of objects dramatically increases the accuracy of the resulting fused sensor data.
Data Requirements in Automobiles
The IoT Data Set

• The amount of data from networked devices may be small in itself but the resulting data set, including the metadata generated with the data can be much larger.
• This data set, including the metadata, is what is analyzed in big data analysis and adds enormously to the overall value of the raw data.
• Understanding and controlling access to metadata is one of the keys for protecting personal content
Data + Metadata

• a 4 byte raw piece of data from a sensor (such as a thermometer) can be associated with 100 bytes of metadata.

• This metadata can include time and location information, information about the sensor device itself and can include accumulating data over time.
Autonomous Cars = Big Data

• Google autonomous car generates about 1 GB/sec. Avg. US driver drives 600 hr/year. This would generate 2 PB/car/year.

• The number of cars worldwide will surpass 1 billion

• So the potential size of data generated by autonomous cars is huge

• Most of the resulting long term storage is in the cloud, which also does the bulk of analytics
Increasing Storage Required

Today

Navigation

~10 m resolution

ADAS Only

2020+

Autonomous Vehicle

~10 cm resolution

Autonomous Vehicle

Full autonomous + real time data capture

RADAR
CAMERAS
ULTRASONIC
LIDAR

Memory Development to Drive Autonomously, Kris Baxter, Micron, 2016 Flash Memory Summit
Memory Trends in Automobiles

• The electric/electronic share of value added to a state-of-the-art vehicle is already at 40 percent for traditional, internal combustion engine cars and jumps as high as 75 percent for electric or hybrid electric vehicles.

• The total available market value for semiconductor memories in automotive applications is expected to be well above the overall CAGR for the total memory semiconductor market.

• Automotives are about 5% of the memory market now but could grow to 10% (2016 Micron Press Release)
Local Memory & Storage Needs

- 3D Maps
- Real Time Data Capture
- Black Box Data Recording
- On Board 4K Content
- Greater than 1 TB capacity common in a car by 2020
- This is addition to storage in local and remote networks
Increasing Memory Content Per Vehicle

Memory Development to Drive Autonomously, Kris Baxter, Micron, 2016 Flash Memory Summit
Automotive Memory Market

Infotainment Matters

- ‘I would switch to another manufacturer if it was the only one offering a car with full access to the applications, data and media’
 - 85% increase in one year
 - In China: 60% would change brands
 - Under 40 years old: 50% would change

© 2016 Coughlin Associates
Infotainment Code Storage and Compute Memory Progression

- **4K Display**: Accelerating adoption of leading edge technology
- **Instant On**: Low power requirements and fast boot NOR Flash
- **Multiple Displays**: High bandwidth LPDRAM

Source: Micron

© 2016 Coughlin Associates
Infotainment Storage Progression

- Smart Phone Integration
- Raw storage of user preference and contacts
- Higher density mass storage requirements
- Increased download buffer capability

Note: Raw Storage is raw NAND or eMMC, mass storage is HDD/SSD

Source: Micron

© 2016 Coughlin Associates
Modern Storage and Memory Technologies
Touch rate versus response time indicating various types of uses
Digital storage technologies regions overlaid on the Touch Rate/Response Time chart
$/GB Trends

~10 X

LTO Tape Media

© 2016 Coughlin Associates
Automotive Code and Data Storage

- Connectivity: NAND, LPDRAM, MCP
- Infotainment: HDD, NOR, e.MMC, UFS, SSD
- Cluster: NOR, e.MMC, UFS, SSD
- ADAS: NOR, e.MMC, UFS, SSD
- Powertrain: NOR
- Black Box: EEPROM
- Auto DVR: HDD, uSD, UFS, SSD
Toshiba Automotive HDD

- Toshiba’s Storage Products HDDs geared to the automotive market.
- The Toshiba MQ01AAD032C is a 320 GB single-platter SATA auto HDD with a rotation rate of 4,200 RPM and with an internal transfer rate of up to 976 Mbits/s and an average seek time of 12 ms.
 These drives are optimized to handle temperatures between -22º to +185ºF, while in operation, and handle -40º to +203ºF during non-operation.
 With special aerodynamic technology in the magnetic head slider, the drive series can withstand altitudes up to 18,536 feet (higher than any city in the world) while in operation, and withstands up to 3G (29.4m/s²) vibration tolerance during operation.
HGST Automobile HDD

- Endurastar J4K320
- 320GB, 250GB, 200GB, 100GB, & 80GB 2.5-inch Hard Disk Drive
- High operating altitude range of up to 5500 meters
- Wide operating temperature range from -30ºC to +85ºC
- 6th generation product, based on proven technology
- SATA interface
Solid-State Automotive Memory and Storage
Automotive Flash Memory

- The SanDisk Automotive portfolio of storage solutions includes an automotive grade SanDisk® SD™ card and iNAND™ embedded flash drive (EFD), which are available to automotive manufacturers in capacities up to 64GB.

- Micron automotive SSDs are built to withstand the rigorous demands of automotive applications, with an extended temperature range and robust data protection features.
Micron says that SLC (single level cell) NAND flash is replacing NOR flash in automobiles.

Its SPI and parallel NAND comes in 1, 2 and 4 Gb densities and has a 10-year data retention at 85 degrees Celsius.

This temperature insensitivity is useful in fanless applications such as automotives.
Flash memory roadmap
From 2D to 3D Flash NAND

- A folded, vertically stacked NAND string
- Cells are generated inside a high-aspect-ratio (HAR) contact hole
- Benefits:
 - Memory density is less dependent on patterning
 - Reduced coupling between memory cells
 - Cost scalability
MRAM for Automobiles

- Everspin, a pioneer in Magnetic Random Access RAM (MRAM) high performance MRAM automotive product line
- The 16Mb MRAM is available in the automotive temperature range of -40 C to 125 C and comes in both x8 and x16 IO configurations. With fast 45 ns read and write cycle times in a parallel asynchronous SRAM like interface
- GLOBALFOUNDRIES' eMRAM 22FDX platform is designed for both code storage (flash) and working memory (SRAM) to enable ultra-efficient memory sub-systems that can be power cycled without any energy or performance penalty. The power efficiency of FDX™ and eMRAM makes 22FDX an ideal platform for battery-powered IoT products and automotive MCUs.

Emerging NVM market could exceed $2 B by 2020

Sample Infotainment Application-
BMW i3 Digital Radio Module
TechInsights BMW Digital Radio Teardown

Cost Breakdown for BMW Digital Radio

- Memory: 5%
- HDD: 6%
- Rest of System: 89%

Partial Schematic of the Mother Board of the BMW HBB125
HDD in BMW Digital Radio
Conclusions

- Although future cars will generate more data than ever before with connectivity and ADAS most of this data goes to the cloud—driving growth in data centers.
- Automobiles will also be part of local networks both within the cars as well as between cars (the fog)—radios including LTE, WiFi, GPS, Bluetooth and RFID.
- Automotive memory and storage is moving to solid state over the next few years including new entrants, like MRAM.
- On the other hand much of the storage in the cloud to support these automobiles will likely be in HDDs.
References

• Clemson University Vehicular Technology Lab
• Memory Development to Drive Autonomously, Kris Baxter, Micron, 2016 Flash Memory Summit
• Steve Hetzler and Tom Coughlin, Touch Rate: A metric for analyzing storage system performance, www.tomcoughlin.com/Techpapers
• T. M. Coughlin and S. L. Linfoot, a Novel Taxonomy for Consumer Metadata, Presented at 2010 ICCE Conference
Thanks