

## Outline

- Drivers of digital storage in the media and entertainment industry
- Storage in:
- Content capture
- Editing and post production
- Content distribution
- Archiving and digital preservation
- Storage trends in media and entertainment
- Conclusions
- Sources


## Digital Entertainment Content Value Chain (An Accelerating Positive Feedback Loop)


© 2009, Coughlin Associates

## Why People Need More Storage

- Memories and information are our greatest resource, long term memory is a key part of being a human being
- Digital technologies allow new ways to create, capture, share and use contentthese are the basis of the next economy
- There is more storage on more devices that we use everyday
- Storage systems will be needed that make this content available to consumers


## Accumulated Digital Content Per Average US Household


-Consumer Survey on Digital Storage in Consumer Electronics (Coughlin Associates, 2008)

- Assume 100 M American Households, each with an average of 11.8 TB of storage
- This is 1.8 B TB of storage or 1,800 Exabytes of storage in US households by 2014


## CE Devices are Content Devices



HP Media Server
USB Storage in all Shapes and Colors


Media Server Products


Blu-ray Player

DVRs and Expanders

## Media Content Size Trends

Virtual Reality, 3D


## Acquisition, Post-Production, and Distribution Workflow.


© 2009, Coughlin Associates

## Example: Omnibus iTX System Architecture



## Unique Features of Profession Media and Entertainment Work Flow

- There can be no pauses in real-time streaming and no dropped frames
- Increasing resolution demands, particularly for the original content, drive very high data rates
- Latency requirements for data access varies in workflow and is lowest (lowest latency) where the creative process takes place
- Capture
- Editing
- Other post production work


## Example Resolution, Data Rates and Storage Capacity Requirements for Professional Media Standards

| Format | Resolution <br> (width X <br> height) | Frame Rate <br> (fps) | Data Rates <br> (MBps) | Storage <br> Capacity/Hour (GB) |
| :--- | :---: | :---: | :---: | :---: |
| MPEG-4 <br> (Compressed) | Varies | Varies | $\sim 0.750$ | $\sim 0.337$ |
| DVD MPEG 2 <br> (NTSC, Compressed) | 720 X 480 | 29.97 | 1.22 | 4.39 |
| SDTV (NTSC, 4:2:2, <br> 8-bit) | $720 \times 480$ | 29.97 | 21 | 75.6 |
| Blu-Ray Disc <br> (Compressed) | $1920 \times$ 1080 | 24 | 4.56 | 16.4 |
| HDTV (1080p, 4:2:2,, <br> 8-bit) | $1920 \times 1080$ | 24 | 149 | 536 |
| Digital Cinema 2k <br> (4:2:2, 10-bit) RGB | 2048 X 1080 | 24 | 199 | 716 |
| Digital Cinema 4K <br> (4:4:4, 16-bit) RGB | 4096 X 2160 | 24 | 1,274 | 4,586 |
| Ultra-HDTV | $7680 \times 4320$ | 60 | 3,233 | 11,640 |

## Feature Film Metrics (24 fps, 10-bit deep, 3-color file assumed)

|  | 2K Resolution | 4K Resolution |
| :--- | :---: | :---: |
| Size of Single Frame | 8.3 MB | 53 MB |
| Avg. Storage Size of <br> Finished Film | 2 TB | 8 TB |
| Data Generated During <br> Production | $100-400 \mathrm{~TB}$ | $400-1,600 \mathrm{~TB}$ |
| Typical Data Rate for <br> Real-Time Film Playback | $200 \mathrm{MB} / \mathrm{s}$ | $1,274 \mathrm{MB} / \mathrm{s}$ |

- Note that 3D content can add about 1.5 X to the storage requirement
-Ultra-HD content (8K) could increase demand by ~16 X



## Flash Based High End Digital Cameras

Percentage of Recording Media in Cameras


Coughlin Associates Professional M\&E Survey, 2009


- Panasonic, Sony and other high end video camera manufacturers are making flash memory-based mobile video cameras
- Most of these use proprietary flash card formats


## Professional Non-Linear Editing Model System



## Shared Storage

NLE Workstation

- 91\% had DAS
- Over $52 \%$ of these had over 1 TB of DAS
- 81\% had NAS or SAN
- Over $44 \%$ had over 16 TB of NAS or SAN

Coughlin Associates Professional M\&E Survey, 2009

## Professional NLE Bandwidth Requirements

| Uncompressed Format | Real Time Bandwidth |
| :--- | :---: |
| 2K NLE Bandwidth | 300 MBps |
| 4K NLE Bandwidth | $1,200 \mathrm{MBps}$ |

Bandwidth Requirements for an Example High End Editing Facility.

| Deflinition/ bandwidth requirements | Bandwldth per node | Number of workstations | Total bandwidth needed |
| :---: | :---: | :---: | :---: |
| Standard Definition (SD) at 30 Fps in RGB@10 bits def | $42 \mathrm{MB} / \mathrm{s}$ | 10 | $420 \mathrm{MB} / \mathrm{s}$ |
| High Definition (HD) 24P RGB © 10bits def | $199 \mathrm{MB} / \mathrm{s}$ | 4 | $796 \mathrm{MB} / \mathrm{s}$ |
| 2 K film resolution | $306 \mathrm{MB} / \mathrm{s}$ | 2 | $612 \mathrm{MB} / \mathrm{s}$ |
| 4 K film resolution | $1223 \mathrm{MB} / \mathrm{s}$ | 1 scanner and 1 station running on local storage | $1223 \mathrm{MB} / \mathrm{s}$ |
| Unqualified applications doing I/O | Less than $10 \mathrm{MB} / \mathrm{s}$ Average 5MB/s | 30 | $\sim 150 \mathrm{MB} / \mathrm{s}$ total |
|  |  | Bandwidth Grand Total | 3201 MB/s |

© 2009, Coughlin Associates

## Post Production Storage Capacity Annual Demand (TB)



## Uses and Flow of metadata in the entertainment content process


 22453;4 (edge number)
-Most metadata is manually generated
-Some automated
sensor input from provide metadata (e.g. GPS in some high end cameras)
-MXF is most common metadata wrapper for profession M\&E workflow

## Professional Broadcast Metadata Generation Time

- ITN employ six shotlisters to process their 800,000 hours of footage and take, on average 5 hours to catalog 1 hour of footage
- BskyB (Sky News) employ 6 shot listers to process their 80,000 hours of footage and take, on average, 3 hours to catalog 1 hour of footage
- BBC employ 20 shotlisters to process their 2,000,000 hours of archive material and take anywhere between 2 hours and 8 hours to catalog 1 hour of footage
- The British Library has over 500,000 user created items and employs 6 shotlisters
- YouTube has over 65,000 videos uploaded EVERY DAY that have rudimentary user created metadata attachedthis could increase 10X in the next few years


## Automated Metadata Generation

- Sensor based such as GPS on devices
- Still and moving image recognition
- Voice to text conversion
- Indexing and generation of searchable information
- Metadata could become very large if it makes the original data easier to use

- SAmgl Automated Metadata Generation
- MeGA (Automatic Metadata Generation Applications) Project (Report from 2005)


## Content Delivery

## Content Delivery Survey Results

- Average hours on central content delivery system was about 200 hours (varied widely) with about 150 hours ingested monthly
- Majority had less than $5 \%$ of content on edge servers
- About 20\% used flash memory on their edge servers

Percentage Content on
Physical Media for Digital
Content Distribution


## VOD Capacity and Bandwidth Requirements

|  | Monthly Ingested <br> Capacity (GB) | Streaming Bandwidth <br> (Mbps) | Streaming Output <br> Capacity (GB) |
| :--- | :---: | :---: | :---: |
| SD | $\sim 100$ | $10,125-$ |  |
| 16,875 | $\sim 720$ |  |  |
| HD | $\sim 900$ | $91,125-$ |  |
| 151,875 | $\sim 6,480$ |  |  |
| Y (Future Formats) | $\sim 10,800$ | $1,081,500-1,822,500$ | $\sim 77,760$ |

2009 Digital Storage for Media and Entertainment Report, Coughlin Associates

## Speed and Power Driving New Storage Hierarchy


-Power use in data center is a major expense and storage plays a significant role (direct power use as well as HVAC power)
-SSDs are being promoted for Tier 0 (very high performance) applications as well as part of a power control solution in data-centers

Solid State Storage 101, An introduction to Solid State Storage, SNIA-SSSI, January 2009
© 2009, Coughlin Associates

# High Performance Uses for Flash Storage in M\&E Content Delivery 

- Storage for metadata index to enable rapid search and access of content on HDD or tape
- Fast playout for delivery applications
- Caching of frequently accessed content for speedy delivery
- Can be used in central facility or for edge delivery


## Flash Based Content Delivery

- In 2008 we saw edge and central delivery products from several companies using
 flash memory including
- SeaChange
- Sun



## SSS Demonstration (SV09)



## SSD Developments for Enterprise Applications



- STEC, Smart Modular, Fusion-io and many other current vendors
- HGST 4 yr. agreement with Intel-qualification products by end of year
- SUN flash DIMM modules announced (working with Samsung)
- Spansion Quad-NOR products for content delivery
- Announcements by Seagate and others expected this year


## Growth of Fast Interfaces



## HDTune \& PCMark

Advancing storage \& information technology




## Survey Results (of those involved in digital archiving and preservation)

- $44 \%$ had $>2,000$ hours of content in a long term archive (many had well over 100,000 hours)
- $40 \%$ archived all the content captured from their cameras
- $55 \%$ archived copies of content in all of their distribution formats
- Average growth rate of digital archives (storage capacity) was between 6 and 10\% annually
- $39 \%$ added 1,000 hours or greater to their archive annually
- About $48 \%$ had $>2,000$ hours of unconverted analog content
- The average annual conversion rate of analog content was about 5\%

Coughlin Associates Professional M\&E Survey, 2009



## Distribution of Storage Capacity for Entertainment Creation, Archiving, and Distribution (2008)



Archiving and
2009 Digital Storage for Media and Entertainment Report, Coughlin Associates
Preservation 85\%

## Media and Entertainment Market Storage Revenue Share by Segment (2008)

Archiving and
Preservation
15\%
Post Production


Content
2009 Digital Storage for Media and Entertainment Report, Coughlin Associates
Distribution 50\%

## Market Share of Storage Media by Storage Capacity Shipped (2014)



# Total New Storage Capacity for Media and Entertainment (over 39 Exabytes of New Storage by 2014) 



```
\squareDigital Conversion & Preservation
New Film, Animation, Broadcast, Episodic Archiving
\squareBroadcast Acquisition
\squareMovie Acquisition
Digital Cinema
\square VOD Streaming
\squareVOD Ingest
\squareNetworks
\squareSatellite Headends
\squareCable Headends
\squareBroadcasters
\squareCompositing and Special Effects
\squarePost Production
```

Total revenue for media and entertainment storage will increase about 2.8X from 2008 through 2014 (\$3.5 B to $\$ 9.9 \mathrm{~B}$ )

## Conclusions

- Consumer demand for greater resolution and more involvement drives storage and bandwidth demand for media and entertainment
-Solid state storage products will allow faster performance, particularly for read although current generation devices vary widely in their performance
-Concerns with power consumption, performance and cost will expand the storage hierarchy—particularly for enterprise applications
-Automated metadata generation will increase, making indexing and using content easier
-Storage security will improve with standards introduced for PC and enterprise storage applications



## Sources

- 2008 and 2009 CES and Storage Visions Conferences (www.storagevisions.com)
- 2008 Creative Storage Conference (www.creativestorage.org)
- 2009 Digital Storage for Media and Entertainment Report, Coughlin Associates
- 2009 Digital Storage in Consumer Electronics Report, Coughlin Associates
- 2009 Survey on Storage for Media and Entertainment, Coughlin Associates
- Go to www.tomcoughlin.com (tech papers page)

